
Exercises

- **1.** Explain the difference between an absolute minimum and a local minimum.
- **2.** Suppose f is a continuous function defined on a closed interval [a, b].
 - (a) What theorem guarantees the existence of an absolute maximum value and an absolute minimum value for f?
 - (b) What steps would you take to find those maximum and minimum values?

6.

whether the function whose graph is shown has an absolute maximum or minimum, a local maximum or minimum, or neither a maximum nor a minimum.

7–10 \square Sketch the graph of a function f that is continuous on [0, 3] and has the given properties.

Abcolute maximum at 0 absolute millimum at

19.
$$f(x) = x^2, 0 \le x < 2$$

20.
$$f(x) = x^2$$
 $0 \le x \le 2$

59.
$$f(x) = \sin x + \cos x$$
, $[0, \pi/3]$

60.
$$f(x) = x - 2\cos x \quad [-\pi \ \pi]$$